思維方式
如果四維超正方體不太好想像的話,我們換成球試試吧。三維球嘛,無論從哪個方向投影在二維平面上都只是一個半經等同的圓形,這樣我們就很容易想到四維球在三維世界中的投影只不過是一個半徑等同的球了。如果還想要討論得深入一些,不妨試試球穿越問題。比如說一個球穿過一個二維平面,二維小人會發現平面上憑空冒出一個慢慢變大的點,後來眼看著擴張成圓,又慢慢縮小成點,最後突然消失。如果這個令二維小人驚訝不已的事實讓你並不覺得奇怪,那麼以下的情形你定會吃驚不小;在你面前無中生有地出現一個點,擴成球又縮回點,再突然消失。多麼神奇!其 實這只不過是四維球穿越三維世界的情形。
這裡講一種思維方式,當你不能夠理解四維的某些描述的時候,試著把自己當作二維人生活在扁平的世界裡看三維(你能夠理解,但是你的描述是受限的)。
將一個立方體的各個表面膨脹,一段時間後會得到一個球
同樣的方法,將超正方體的表面膨脹,會得到一個「超球」(Hypersphere)
當我們置身於超正方體膨脹成的超球中的時候,我們就會看見右圖的這個情景——此時我們置身在「最外部」的立方體(當然是膨脹了的)面上
平行投影
上面的兩種其實都屬於透視投影——實際上立方體的平行投影是絕對不會出現一大一小大正方形
四維超正方體不但可以投影到三維,而且也可以直接投影到二維平面上(是直接,不經過三維),但是由於是投影在二維上,會失真得很厲害。所以只能夠表現一些點與線之間的連接關係 右圖是超正方體的二維線架正投影,ABCD分別是四個軸,注意「相鄰」兩根軸的夾角都是45度的。16個頂點坐標分別是(±1,±1,±1,±1)(下文有簡單推導),然後按照給出的一個一個填上去就是的了(方法說上去有點煩,大家可以用幾何畫板畫畫這個投影,其實蠻簡單的)。