思维方式
如果四维超正方体不太好想象的话,我们换成球试试吧。三维球嘛,无论从哪个方向投影在二维平面上都只是一个半经等同的圆形,这样我们就很容易想到四维球在三维世界中的投影只不过是一个半径等同的球了。如果还想要讨论得深入一些,不妨试试球穿越问题。比如说一个球穿过一个二维平面,二维小人会发现平面上凭空冒出一个慢慢变大的点,后来眼看着扩张成圆,又慢慢缩小成点,最后突然消失。如果这个令二维小人惊讶不已的事实让你并不觉得奇怪,那么以下的情形你定会吃惊不小;在你面前无中生有地出现一个点,扩成球又缩回点,再突然消失。多么神奇!其 实这只不过是四维球穿越三维世界的情形。
这里讲一种思维方式,当你不能够理解四维的某些描述的时候,试着把自己当作二维人生活在扁平的世界里看三维(你能够理解,但是你的描述是受限的)。
将一个立方体的各个表面膨胀,一段时间后会得到一个球
同样的方法,将超正方体的表面膨胀,会得到一个“超球”(Hypersphere)
当我们置身于超正方体膨胀成的超球中的时候,我们就会看见右图的这个情景——此时我们置身在“最外部”的立方体(当然是膨胀了的)面上
平行投影
上面的两种其实都属于透视投影——实际上立方体的平行投影是绝对不会出现一大一小大正方形
四维超正方体不但可以投影到三维,而且也可以直接投影到二维平面上(是直接,不经过三维),但是由于是投影在二维上,会失真得很厉害。所以只能够表现一些点与线之间的连接关系 右图是超正方体的二维线架正投影,ABCD分别是四个轴,注意“相邻”两根轴的夹角都是45度的。16个顶点坐标分别是(±1,±1,±1,±1)(下文有简单推导),然后按照给出的一个一个填上去就是的了(方法说上去有点烦,大家可以用几何画板画画这个投影,其实蛮简单的)。