作者共發了3篇帖子。 字體大小:較小 - 100% (默認)▼  內容轉換:不轉換▼
 
點擊 回復
400 2
1,3,9,27,...,3ⁿ⁻¹
一派護法 十九級
1樓 發表于:2014-7-26 18:15
一派護法 十九級
2樓 發表于:2014-7-26 18:16
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。

提问者评价
谢谢!正在努力看懂它。
一派護法 十九級
3樓 發表于:2014-7-26 18:16
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。

提问者评价
谢谢!正在努力看懂它。
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。

提问者评价
谢谢!正在努力看懂它。
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。
提问者评价
谢谢!正在努力看懂它。
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。

提问者评价
谢谢!正在努力看懂它。
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。
提问者评价
谢谢!正在努力看懂它。
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。

提问者评价
谢谢!正在努力看懂它。
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。
提问者评价
谢谢!正在努力看懂它。
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。

提问者评价
谢谢!正在努力看懂它。
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。

提问者评价
谢谢!正在努力看懂它。
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。

提问者评价
谢谢!正在努力看懂它。
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。

提问者评价
谢谢!正在努力看懂它。
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。

提问者评价
谢谢!正在努力看懂它。
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。

提问者评价
谢谢!正在努力看懂它。
(1)S(n³)=(Sn)³,所以:
S1=(S1)³,说明a1=(a1)³,{an}是正整数数列,所以a1=1。由于:
S(n³)=n³a1+½n³(n³+1)d
(Sn)³=[na1+½n(n+1)d]³
将a1=1代入两式,要两式恒等,只能d=0
所以an=1,是一个常数列。

(2)
(i)先求a1,a2
当n=2时,我们取a1,a2,根据题意,
a1,a2,a1+a2,|a1-a2| 这4个数应该涵盖1到S2之间所有的正整数,
所以S2=4,易知a1=1,a2=3。
(ii)现在来探讨{an}的通项公式。
对于一般的n,a1到an之间的数字组合加减运算,一共能出现多少种结果呢?
这些数加减运算时,对于每一个a(i),我们都有三种处理方法:加上它(等于a(i)),减去它(等于 -1*a(i)),不用它(等于0*a(i))。所以a1到an组合方式一共是3ⁿ 种。不过所有的都不选,应该抛除,所以组合是3ⁿ -1种。其中结果有正有负,要取绝对值的,所以:3ⁿ -1种组合,能带来(3ⁿ -1)/2种不同结果。这些结果题目要求恰好涵盖1到Sn之间所有正整数,所以这就要求Sn=(3ⁿ -1)/2。
这里解释一下:比如a1=1和a2=3,可以组合出多少数呢?
a1+a2=4, a1+(-1)a2= -2, a1+0a2=1
(-1)a1+a2=2, (-1)a1+(-1)a2= -4, (-1)a1+0a2= -1
0a1+a2=3, 0a1+(-1)a2= -3, 0a1+0a2=0
一共9种组合(3²种)
需要减去0a1+0a2,因为a1,a2都没选,无效计算。剩余8种运算(3²-1种)。
这结果中,有负有正,取绝对值,就剩下4种结果1,2,3,4了。((3²-1)/2种)。所以S2=(3²-1)/2=4

既然知道Sn=(3ⁿ -1)/2,由Sn-S(n-1)=an,知道,
an=3ⁿ⁻¹

经验证,1,3,9,27,...,3ⁿ⁻¹确实符合题目要求。

提问者评价
谢谢!正在努力看懂它。

回復帖子

內容:
用戶名: 您目前是匿名發表
驗證碼:
(快捷鍵:Ctrl+Enter)
 

本帖信息

點擊數:400 回複數:2
評論數: ?
作者:巨大八爪鱼
最後回復:巨大八爪鱼
最後回復時間:2014-7-26 18:16
 
©2010-2025 Arslanbar Ver2.0
除非另有聲明,本站採用創用CC姓名標示-相同方式分享 3.0 Unported許可協議進行許可。