親愛的用戶:歡迎來到除以零吧,阿斯蘭侃吧歡迎您的到來~
請先閱讀我們的社區準則:
https://zh.arslanbar.net/documents/eula/
以及版權聲明:
https://zh.arslanbar.net/documents/copyright/
您可在此暢所欲言,並和朋友們交流~~
祝您在此吧玩得愉快~
侃吧管理员
在數學中,被除數的除數(分母)是零或將某數除以零,可表達為,是被除數。在算式中沒有意義,因為沒有數目,以零相乘(假設),由於任何數字乘以零均等於零,因此除以零是一個沒有定義的值。此式是否成立端視其在如何的數學設定下計算。一般實數算術中,此式為無意義。在程序設計中,當遇上正整數除以零程序會中止,正如浮點數會出現無限大或NaN值的情況,而在Microsoft Excel及Openoffice或Libreoffice的Calc中,除以零會直接顯示#DIV/0! 。
基本算術中,除法指將一個集合中的物件分成若干等份。例如,個蘋果平分給人,每人可得個蘋果。同理,個蘋果只分給人,則其可獨得個蘋果。
若除以又如何?若有顆蘋果,無人(解作沒有)來分,每「人」可得多少蘋果?問題本身是無意義的,因根本無人來,論每「人」可得多少,根本多餘。因此,,在基本算術中,是無意義或未下定義的。
另種解釋是將除法理解為不斷的減法。例如「除以」,換一種說法,減去兩個,餘下,即被除數一直減去除數直至餘數數值低於除數,算式為餘數。若某數除以零,就算不斷減去零,餘數也不可能小於除數,使得算式與無窮拉上關係,超出基本算術的範疇。此解釋也有一問題,即為無窮大乘以零仍是零。
早期嘗試
婆羅摩笈多(598–668年)的著作《婆羅摩曆算書》被視為最早討論零的數學和定義涉及零的算式的文本。但當中對除以零的論述並不正確,根據婆羅摩笈多所說,
830年,另一位數學家摩訶吠羅在其著作《Ganita Sara Samgraha》試圖糾正婆羅摩笈多的錯誤,但不成功:
婆什迦羅第二嘗試解決此問題,答案是讓。雖然此定義有一定道理,但會導致一个悖論:的结果可以是任意一个数,所以所有的数都是相同的。[1]
在微積分和数学分析中,像或這一類極限稱為不定型。不定型是可以計算的,結果可能是任意数。
代數處理
若某數學系統遵從域的公理,則在該數學系統內除以零必須為沒有意義。這是因為除法被定義為是乘法的逆向操作,即值是方程中的解(若有的話)。若設,方程式可寫成或直接。
在代數運算中不當使用除以零可得出無效證明:
式:
試:
得出:
除以零得出
簡化,得出:
以上謬論假設,某數除以0是容許的,並且。
內容轉換: