目前共有24篇帖子。
您好,阿斯蘭侃吧歡迎您的到來~
1楼 侃吧管理员 2024-11-26 16:53

親愛的用戶:歡迎來到0.999…吧,阿斯蘭侃吧歡迎您的到來~

請先閱讀我們的社區準則:

https://zh.arslanbar.net/documents/eula/

以及版權聲明:

https://zh.arslanbar.net/documents/copyright/

您可在此暢所欲言,並和朋友們交流~~

祝您在此吧玩得愉快~

侃吧管理員

2楼 JosephHeinrich 2024-11-26 18:48
中文維基百科記述:


一個立體化的0.999…文本。

0.999…,也可寫作或是,是一個具有特殊意義的無限循環小數,由小數點後無限的 9 序列組成。在數學的完備實數系中,「0.999…」所表示的數與「1」相同。換句話說,「0.999...」不是「幾乎完全」或「非常、非常接近但不完全」等於1;相反,「0.999...」和「1」正好代表相同的數字。

3楼 JosephHeinrich 2024-11-26 18:48

有很多方法可以證明這種等式,從直覺的論證到嚴謹的數學證明。 所使用的技術取決於目標受眾、背景假設、歷史背景和實數概念的發展,因為通常是在實數系統中定義 0.999...。 在其他系統中,0.999... 可以具有相同的含義、不同的定義或未定義。

一般地說,每個非零有限小數都有兩個相等的表示形式(例如,8.32 和 8.31999...),這是所有位置數字系統表示形式的屬性,無論基數如何。 對有限小數十進制表示形式的功利主義偏好導致了一種誤解,認為它是唯一的表示形式。 由於這個原因和其他原因(例如依賴於非基本技術、屬性或學科的嚴格證明),有些人可能會發現等式足夠違反直覺,從而質疑或拒絕它,而這一直是數學教育中多項研究的主題。

4楼 JosephHeinrich 2024-11-26 18:49

0.999…是書寫於小數記數系統中的一個數,讀作:「零點九,九循環」。一些最簡單的0.999… = 1 的證明都依賴於這個系統方便的算術性質。大多數的小數算術──加法、減法、乘法、除法,以及大小的比較,使用與整數差不多的數位層次的操作。與整數一樣,任何兩個有限小數隻要數位不同,那麼數值也一定不同。相對的,任何一個形如0.99…9的數,但是9的數量有限,則這個數字是小於1的。

這類展開式的非唯一性不僅限於十進制系統,相同的現象也出現在其它的整數進位制中。數學家們也列舉出了一些1在非整數進位制中的寫法,這種現象也不是僅僅限於1的:對於每一個非零的有限小數,都存在另一種含有無窮多個9的寫法,由於簡便的原因,這時幾乎肯定使用有限小數的寫法,這樣就更加使人們誤以為沒有其它寫法了,實際上,一旦在完備實數系中允許使用無限小數,那麼在所有的進位制中都有無窮多種替代的寫法,例如,18.3287與18.3286999…、18.3287000…,以及許多其它的寫法,都表示相同的數,這些各種各樣的等式被用來更好地理解分數的小數展開式的規律,以及一個簡單分形圖形──康托爾集合的結構,它們也出現在一個對整個實數的無窮集合的經典研究之中。

在過去數十年裡,許多數學教育的研究人員研究了大眾及學生們對該等式的接受程度,許多學生在學習開始時懷疑甚至拒絕該等式,但許多學生被老師、教科書和如下章節的算術推論說服並接受兩者是相等的。儘管如此,許多人們仍常感到懷疑,及提出進一步的辯解,這經常是由於存在不少對數學實數的錯誤觀念等背後因素(參見以下教育中遇到的懷疑一章節),例如認為每一個實數都有唯一的一個小數展開式,以及認為無限小(無窮小)不等於0,並且將0.999…視為一個不定值,即該值只是一直微微擴張變大,因此與1的差永遠是無限小而不是0,因此「永遠都差一點」。可以構造出符合這些直觀的數系,但這個觀念只能用於初等數學或多數更高等數學中的標準實數系統之外進行,的確,某些設計含有「恰恰小於1」的數,不過,這些數一般與0.999…無關(因為與之相關的理論上和實踐上都皆無實質用途),但在數學分析中引起了相當大的關注。

誤解0.999…中的省略號的意義,是誤解0.999…= 1的其中一個原因。這裡省略號的用法與日常語言中0.99…9的用法是不同的,0.99…9中的省略號意味着的有限的部分被省略掉了。但是,當用來表示一個循環小數的時候,"…"則意味着無限的部分被省略掉了,這只能用極限的數學概念來闡釋。作為使用傳統數學的結果,指派給記數表示式「0.999…」的值定義為一個實數,該實數為收斂數列(0.9,0.99,0.999,0.9999,0.99999,…)的極限。「0.999…」是一個數列的極限,從而,對於0.999…= 1這個等式就很直觀了。

與整數和有限小數的情況不一樣,其實記數法也可以用多種方式表示單一個數值。例如,如果使用分數,。但是,一個數最多只能用兩種無限小數的方法來表示。如果有兩種方法,那麼其中一種一定是從某一位開始全是循環重複的9,而另外一種則是從某一位開始就全是循環重複的0。

0.999… = 1 有許多證明,它們各有不同的嚴謹性,一個嚴謹的證明可以簡單地說明:考慮到兩個實數其實是同一個的,當且僅當它們的差等於零。大部分人都同意;0.999…與 1 的差,就算存在也是非常的小(實際上根本不存在,即差等於0)。考慮到以上的收斂數列,這時可以證明這個差的大小一定是小於任何一個正數的,也可以證明(詳細內容參見阿基米德性質),唯一具有這個性質的實數是0。由於差是0,可知 1 和 0.999…是同一數,用相同的理由,也可以解釋為什麼「0.333…=1/3」;以及該等式乘上3倍後可得出「0.999… = 1」。

5楼 JosephHeinrich 2024-11-26 18:49

證明

對位相減

在不考慮柯西序列的情況下:1.00000…−0.99999…這個結果為0.000…,也就是後面的0無限循環。這兩個數目皆可表示成無限循環小數,小數點後五位之後還會一直填上0,始終無法找到最後一位來填上1,因為如果補上1就會成為有限小數。1.000… - 0.999… = 0.000… = 0,故1 = 0.999…。

這假設了0.999…沒有「最後的9」、這些無限循環小數的小數點後的位數為可列的(可以由第一個數位一個位一個位數下去而於有限次數到任一個數位)(這已得出0.999…沒有「最後的9」)、1.000… - 0.999…的結果存在小數表示式。運算結果將沒有「最後的1」,所以1與0.999…沒有差值。

6楼 JosephHeinrich 2024-11-26 18:49

代數

分數

無限小數是有限小數的一個必要的延伸,其中一個原因是用來表示分數。用長除法,一個像的簡單整數,長除法後變成了一個循環小數0.333…,其中有無窮多個數字3。利用這個小數,很快就能得到一個 0.999… = 1 的證明。用 3 乘以 0.333… 中的每一個 3,便得到 9,所以 3 × 0.333… 等於 0.999…。由於  等於1,所以 0.999… = 1。

這個證明的另外一種形式,是用同乘以9。




    

  

由於兩個方程都是正確的,因此根據相等關係的傳遞性質,0.999…一定等於1。類似地,,且。所以0.999…= 1。

7楼 JosephHeinrich 2024-11-26 18:49

一個特別的除法豎式

用豎式計算可得 

設 



解此一元一次方程式得:



所以  。

8楼 JosephHeinrich 2024-11-26 18:50

位數操作

另外一種證明更加適用於其它循環小數。當一個小數乘以10時,其數字不變,但小數點向右移了一位。因此10 × 0.999…等於9.999…,它比原來的數大9。

考慮從9.999…減去0.999…。這時可以一位一位地減;在小數點後的每一位,結果都是9 - 9,也就是0。但末尾的零並不能改變一個數,所以相差精確地是9。最後一個步驟用到了代數。設0.999… = c,則10c − c = 9,也就是9c = 9。等式兩端同除以9,便得證:c = 1。用一系列方程來表示,就是

0.(9)=1的解釋

以上兩個證明中的位數操作的正確性,並不需要盲目相信,也無需視為公理;它是從小數和所表示的數之間的基本關係得出的。這個關係,可以用幾個等價的方法來表示,已經規定了0.999…和1都表示相同的實數。

9楼 JosephHeinrich 2024-11-26 18:50

實分析

無窮級數和數列

對於任何一個小數,都可以定義為無窮級數的和。一般地:



.

對於0.999…來說,這時可以使用等比級數的收斂定理:



如果
10楼 JosephHeinrich 2024-11-26 18:50
等比級數的和本身,是一個比歐拉還要早的結果。一個典型的18世紀的推導用到了逐項的操作,類似於以上的代數證明。直到1811年,Bonnycastle的教科書《An Introduction to Algebra》(《代數的介紹》)依然使用這種等比級數的方法來證明對0.999…使用的策略是正當的。在19世紀,這種在當時被以為隨隨便便的求和方法遭到了反對,這樣便導致了現在仍然佔有支配地位的定義:一個級數的和定義為數列的部分和的極限。該定理的一個對應的證明,明確地把這個數列計算出來了;這可以在任何一本以證明為基礎的微積分或數學分析的教科書中找到。

回复帖子

内容:
用户名: 您目前是匿名发表
验证码:
 
 
©2010-2025 Arslanbar [手机版] [桌面版]
除非另有声明,本站采用知识共享署名-相同方式共享 3.0 Unported许可协议进行许可。