三角函數的早期研究可以追溯到古代。例如古埃及數學家在鑑別尼羅河泛濫後的土地邊界、保持金字塔每邊斜度相同,都使用了三角術,只是他們可能還沒有對這種方式定名而已。古希臘三角術的奠基人是公元前2世紀的喜帕恰斯。他按照古巴比倫人的做法,將圓周分為360等份(即圓周的弧度為360度,與現代的弧度制不同)。對於指定弧度,他給出了對應的弦的長度數值,這記法和現代的正弦函數等價。喜帕恰斯實際上給出了最早的三角函數數值表。然而古希臘的三角學基本是球面三角學。這與古希臘人研究的主體是天文學有關。梅涅勞斯在他的著作《球面學》中使用了正弦來描述球面的梅涅勞斯定理。古希臘三角學與其天文學的應用在埃及的托勒密時代達到了高峰,托勒密在《數學彙編》(Syntaxis Mathematica)中計算了36度角和72度角的正弦值,還給出了計算和角公式和半角公式的方法。托勒密還給出了所有0到180度的所有整數和半整數弧度對應的正弦值[3]:133-140[4]:151-152。
希臘文化傳播到古印度後,印度人繼續研究了三角術。公元5世紀末的數學家阿耶波多提出用弧對應的弦長的一半來對應半弧的正弦,後來古印度數學家亦用了這做法,和現代的正弦定義一致[4]:189。阿耶波多的計算中也使用了餘弦和正割。他在計算弦長時使用了不同的單位,重新計算了0到90度中間隔三又四分之三度(3.75°)的三角函數值表[4]:193。然而古印度的數學與當時的中國一樣,停留在計算方面,缺乏系統的定義和演繹的證明。阿拉伯人也採用了古印度人的正弦定義,但他們的三角學是直接繼承於古希臘。阿拉伯天文學家引入了正切和餘切、正割和餘割的概念,並計算了間隔10分(10′)的正弦和正切數值表[3]:214-215。到了公元14世紀,阿拉伯人將三角計算重新以算術方式代數化(古希臘人採用的是建立在幾何上的推導方式)的努力為後來三角學從天文學中獨立出來,成為了有更廣泛應用的學科奠定了基礎。[3]:225
進入15世紀後,阿拉伯數學文化開始傳入歐洲。隨著歐洲商業興盛起來,航行、曆法測定和地理測繪中出現了對三角學的需求。在翻譯阿拉伯數學著作的同時,歐洲數學家開始製作更詳細精確的三角函數值表。哥白尼的學生喬治·約阿希姆·瑞提克斯製作了間隔10秒(10″)的正弦表,有9位精確值。瑞提克斯還改變了正弦的定義,原來稱弧對應的弦長是正弦,瑞提克斯則將角度對應的弦長稱為正弦。16世紀後,數學家開始將古希臘有關球面三角的結果和定理轉化為平面三角定理。弗朗索瓦·韋達給出了托勒密的不少結果對應的平面三角形式。他還嘗試計算了多倍角正弦的表達方式。[3]:275-278
18世紀開始引進解析幾何等分析學工具,數學家開始用分析學研究三角函數。牛頓在1669年的《分析學》一書中給出了正弦和餘弦函數的無窮級數表示。Collins將牛頓的結果告訴詹姆斯·格列高里,後者進一步給出了正切等三角函數的無窮級數。萊布尼茲在1673年左右也獨立得到這結果[5]:162-163。歐拉的《無窮小量分析引論》(Introductio in Analysin Infinitorum,1748年)對建立三角函數的分析處理做了最主要的貢獻,他定義三角函數為無窮級數,並表述了歐拉公式,還有使用接近現代的簡寫sin.、cos.、tang.、cot.、sec.和csc.(cosec.)。
1631年徐光啟與鄧玉函、湯若望合撰《大測》首次將三角函數引入中國並確立了正弦、餘弦等譯名。