|
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
|
|
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
|
|
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
|
|
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
|
|
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
|
|
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
|
|
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
|
|
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
|
|
tan(A/2)=√((1-cosA)/((1+cosA))
|
|
tan(A/2)=-√((1-cosA)/((1+cosA))
|